Focused ultrasound enhances the anesthetic effects of topical lidocaine in rats

Author:

Kim Hyun-Chul,Lee Wonhye,Böhlke Mark,Yoon Kyungho,Yoo Seung-Schik

Abstract

Abstract Background High-intensity ultrasound has been used to induce acoustic cavitation in the skin and subsequently enhances skin permeability to deliver hydrophobic topical medications including lidocaine. In contrast, instead of changing skin permeability, pulsed application of low-intensity focused ultrasound (FUS) has shown to non-invasively and temporarily disrupt drug-plasma protein binding, thus has potential to enhance the anesthetic effects of hydrophilic lidocaine hydrochloride through unbinding it from serum/interstitial α1-acid glycoprotein (AAG). Methods FUS, operating at fundamental frequency of 500 kHz, was applied pulse-mode (55-ms pulse duration, 4-Hz pulse repetition frequency) at a spatial-peak pulse-average intensity of 5 W/cm2. In vitro equilibrium dialysis was performed to measure the unbound concentration of lidocaine (lidocaine hydrochloride) from dialysis cassettes, one located at the sonication focus and the other outside the sonication path, all immersed in phosphate-buffered saline solution containing both lidocaine (10 µg/mL) and human AAG (5 mg/mL). In subsequent animal experiments (Sprague-Dawley rats, n = 10), somatosensory evoked potential (SSEP), elicited by electrical stimulations to the unilateral hind leg, was measured under three experimental conditions—applications of FUS to the unilateral thigh area at the site of administered topical lidocaine, FUS only, and lidocaine only. Skin temperature was measured before and after sonication. Passive cavitation detection was also performed during sonication to evaluate the presence of FUS-induced cavitation. Results Sonication increased the unbound lidocaine concentration (8.7 ± 3.3 %) from the dialysis cassette, compared to that measured outside the sonication path (P < 0.001). Application of FUS alone did not alter the SSEP while administration of lidocaine reduced its P23 component (i.e., a positive peak at 23 ms latency). The FUS combined with lidocaine resulted in a further reduction of the P23 component (in a range of 21.8 − 23.4 ms after the electrical stimulations; F(2,27) = 3.2 − 4.0, P < 0.05), indicative of the enhanced anesthetic effect of the lidocaine. Administration of FUS neither induced cavitation nor altered skin conductance or temperature, suggesting that skin permeability was unaffected. Conclusions Unbinding lidocaine from the plasma proteins by exposure to non-thermal low-intensity ultrasound is attributed as the main mechanism behind the observation.

Funder

Sponsored Research Agreement through Partners Healthcare Innovation Office

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3