Author:
Liang Xinxiu,Fu Yuanqing,Cao Wen-ting,Wang Zhihong,Zhang Ke,Jiang Zengliang,Jia Xiaofang,Liu Chun-ying,Lin Hong-rou,Zhong Haili,Miao Zelei,Gou Wanglong,Shuai Menglei,Huang Yujing,Chen Shengdi,Zhang Bing,Chen Yu-ming,Zheng Ju-Sheng
Abstract
Abstract
Background
Microbiome-gut-brain axis may be involved in the progression of age-related cognitive impairment and relevant brain structure changes, but evidence from large human cohorts is lacking. This study was aimed to investigate the associations of gut microbiome with cognitive impairment and brain structure based on multi-omics from three independent populations.
Methods
We included 1430 participants from the Guangzhou Nutrition and Health Study (GNHS) with both gut microbiome and cognitive assessment data available as a discovery cohort, of whom 272 individuals provided fecal samples twice before cognitive assessment. We selected 208 individuals with baseline microbiome data for brain magnetic resonance imaging during the follow-up visit. Fecal 16S rRNA and shotgun metagenomic sequencing, targeted serum metabolomics, and cytokine measurements were performed in the GNHS. The validation analyses were conducted in an Alzheimer’s disease case–control study (replication study 1, n = 90) and another community-based cohort (replication study 2, n = 1300) with cross-sectional dataset.
Results
We found protective associations of specific gut microbial genera (Odoribacter, Butyricimonas, and Bacteroides) with cognitive impairment in both the discovery cohort and the replication study 1. Result of Bacteroides was further validated in the replication study 2. Odoribacter was positively associated with hippocampal volume (β, 0.16; 95% CI 0.06–0.26, P = 0.002), which might be mediated by acetic acids. Increased intra-individual alterations in gut microbial composition were found in participants with cognitive impairment. We also identified several serum metabolites and inflammation-associated metagenomic species and pathways linked to impaired cognition.
Conclusions
Our findings reveal that specific gut microbial features are closely associated with cognitive impairment and decreased hippocampal volume, which may play an important role in dementia development.
Funder
the National Natural Science Foundation of China
Zhejiang Provincial Ten Thousand Plan for Young Top Talents
Foundation for the National Institutes of Health
National Institute of Diabetes and Digestive and Kidney Diseases
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neurology (clinical)
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献