Author:
Shen Xin,Leng Bing,Zhang Shukun,Kwok Lai-Yu,Zhao Feiyan,Zhao Jia,Sun Zhihong,Zhang Jinbiao
Abstract
Background: Parkinson’s disease (PD) is a neurodegenerative disorder, and the main clinical characteristics are bradykinesia and muscle stiffness. Cognitive impairment (CI) is a prevalent non-motor manifestation observed in individuals with PD. According to disease severity, it can be divided into PD with mild cognitive impairment (MCI) and PD dementia. CI in PD patients may precede motor symptoms, and the gut microbiota plays an important role in PD pathogenesis. Therefore, gut microbiota may be one of the diagnostic targets for PD-CI.
Methods: This study compared the gut microbiota of 43 PD-CI patients [Montreal Cognitive Assessment (MoCA) score < 26] and 38 PD patients without CI (MoCA ≥ 26). Patients’ neuropsychological conditions, depression scale, and brain structure scanned by magnetic resonance imaging (MRI) were also recorded. The fecal metagenomic datasets of patients with PD, PD-CI, and CI only were retrieved from public databases for reanalysis to explore the relationship between PD, CI, and gut microbiota.
Results: We found that the cortical thickness and the volume of the hippocampus, gray matter, and thalamus were significantly reduced among patients with PD-CI compared to PD without CI (P < 0.05). Moreover, the gut microbiome in patients with PD-CI had fewer short-chain fatty acid (SCFA) producing bacteria and more pathogenic bacteria. There were also alterations in patterns of metabolic pathway-encoding genes. Additionally, PD affected gut microbiota more than CI.
Conclusion: CI may aggravate the severity of PD, but it did not drastically alter subjects’ gut microbiota. This study reveals the relationship between gut microbiota, PD, and CI.