Abstract
Abstract
Background
Growing evidence suggests an association between Parkinson’s disease (PD) and diabetes mellitus (DM). At the cellular level, long-term elevated levels of glucose have been shown to lead to nigrostriatal degeneration in PD models. However, the underlying mechanism is still unclear. Previously, we have elucidated the potential of type 2 diabetes mellitus (T2DM) in facilitating PD progression, involving aggregation of both alpha-synuclein (α-syn) and islet amyloid polypeptide in the pancreatic and brain tissues. However, due to the complicated effect of insulin resistance on PD onset, the actual mechanism of hyperglycemia-induced dopaminergic degeneration remains unknown.
Methods
We employed the type 1 diabetes mellitus (T1DM) model induced by streptozotocin (STZ) injection in a transgenic mouse line (BAC-α-syn-GFP) overexpressing human α-syn, to investigate the direct effect of elevated blood glucose on nigrostriatal degeneration.
Results
STZ treatment induced more severe pathological alterations in the pancreatic islets and T1DM symptoms in α-syn-overexpressing mice than in wild-type mice, at one month and three months after STZ injections. Behavioral tests evaluating motor performance confirmed the nigrostriatal degeneration. Furthermore, there was a marked decrease in dopaminergic profiles and an increase of α-syn accumulation and Serine 129 (S129) phosphorylation in STZ-treated α-syn mice compared with the vehicle-treated mice. In addition, more severe neuroinflammation was observed in the brains of the STZ-treated α-syn mice.
Conclusion
Our results solidify the potential link between DM and PD, providing insights into how hyperglycemia induces nigrostriatal degeneration and contributes to pathogenic mechanisms in PD.
Funder
National Natural Science Foundation of China
Key Field Research Development Program of Guangdong Province
The Swedish Research Council
EU-JPND research
EU-Horizon2020
ParkinsonFonden, the Strategic Research Area Multipark
Svenska Sällskapet för Medicinsk Forskning
Hjärnfodens
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neurology (clinical)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献