Surfen and oxalyl surfen decrease tau hyperphosphorylation and mitigate neuron deficits in vivo in a zebrafish model of tauopathy

Author:

Alavi Naini Seyedeh Maryam,Yanicostas Constantin,Hassan-Abdi Rahma,Blondeel Sébastien,Bennis Mohamed,Weiss Ryan J.,Tor Yitzhak,Esko Jeffrey D.,Soussi-Yanicostas NadiaORCID

Abstract

Abstract Background Tauopathies comprise a family of neurodegenerative disorders including Alzheimer’s disease for which there is an urgent and unmet need for disease-modifying treatments. Tauopathies are characterized by pathological tau hyperphosphorylation, which has been shown to correlate tightly with disease progression and memory loss in patients suffering from Alzheimer’s disease. We recently demonstrated an essential requirement for 3-O-sulfated heparan sulfate in pathological tau hyperphosphorylation in zebrafish, a prominent model organism for human drug discovery. Here, we investigated whether in vivo treatment with surfen or its derivatives oxalyl surfen and hemisurfen, small molecules with heparan sulfate antagonist properties, could mitigate tau hyperphosphorylation and neuronal deficits in a zebrafish model of tauopathies. Results In vivo treatment of Tg[HuC::hTauP301L; DsRed] embryos for 2 days with surfen or oxalyl surfen significantly reduced the accumulation of the pThr181 tau phospho-epitope measured by ELISA by 30% and 51%, respectively. Western blot analysis also showed a significant decrease of pThr181 and pSer396/pSer404 in embryos treated with surfen or oxalyl surfen. Immunohistochemical analysis further confirmed that treatment with surfen or oxalyl surfen significantly decreased the AT8 tau epitope in spinal motoneurons. In addition, in vivo treatment of Tg[HuC::hTauP301L; DsRed] embryos with surfen or oxalyl surfen significantly rescued spinal motoneuron axon-branching defects and, as a likely consequence, the impaired stereotypical touch-evoked escape response. Importantly, treatment with hemisurfen, a surfen derivative devoid of heparan sulfate antagonist activity, does not affect tau hyperphosphorylation, nor neuronal or behavioural deficits in Tg[HuC::hTauP301L; DsRed] embryos. Conclusion Our findings demonstrate for the first time that surfen, a well-tolerated molecule in clinical settings, and its derivative, oxalyl surfen, could mitigate or delay neuronal defects in tauopathies, including Alzheimer’s disease.

Funder

Servier Research Institute

Institut National de la Santé et de la Recherche Médicale

Agence Nationale de la Recherche

Fondation NRJ

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Clinical Neurology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Tauopathies in Zebrafish (Danio rerio);Journal of Evolutionary Biochemistry and Physiology;2023-11

2. Modeling Taupathies in Zebrafish (<i>Danio rerio</i>);Российский физиологический журнал им  И  М  Сеченова;2023-11-01

3. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders;Cellular and Molecular Neurobiology;2023-04-01

4. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing;International Journal of Molecular Sciences;2022-12-06

5. Heparan Sulfate Proteoglycans in Tauopathy;Biomolecules;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3