Author:
Margaritis Ioannis,Angelopoulou Katerina,Lavrentiadou Sophia,Mavrovouniotis Ilias C.,Tsantarliotou Maria,Taitzoglou Ioannis,Theodoridis Alexandros,Veskoukis Aristidis,Kerasioti Efthalia,Kouretas Dimitrios,Zervos Ioannis
Abstract
Abstract
Background
Diabetes is regarded as an epidemiological threat for the twenty-first century. Phytochemicals with known pharmaceutical properties have gained interest in the field of alleviating secondary complications of diseases. Such a substance is crocin, a basic constituent of saffron (Crocus sativus). The present study aimed at examining the beneficial effects of per os crocin administration on the antioxidant status, blood biochemical profile, hepatic gene expression and plasminogen activator inhibitor-1 activity (PAI-1) in the liver, kidney and plasma (an important marker of pre-diabetic status and major factor of thrombosis in diabetes) of healthy rats, as well as of rats with nicotinamide-streptozotocin-induced diabetes.
Results
Diabetes disrupted the oxidation-antioxidation balance, while crocin improved the antioxidant state in the liver by significantly affecting SOD1 gene expression and/or by restoring SOD and total antioxidant capacity (TAC) levels. In the kidney, crocin improved hydrogen peroxide decomposing activity and TAC. In blood, hepatic transaminases ALT and AST decreased significantly, while there was a trend of decrease regarding blood urea nitrogen (BUN) levels. The expression of PAI-1 gene was affected in the liver by the dose of 50 mg kg−1.
Conclusions
Crocin treatment contributed in restoring some parameters after diabetes induction, primarily by affecting significantly hepatic transaminases ALT and AST, SOD1 and PAI-1 gene expression and nephric H2O2 decomposing activity. In conclusion, crocin did contribute to the alleviation of some complications of diabetes.
Publisher
Springer Science and Business Media LLC
Reference92 articles.
1. Winer N, Sowers JR. Epidemiology of diabetes. J Clin Pharmacol. 2004;44:397–405.
2. International Diabetes Federation. 2017. IDF Atlas, 8th Edn. https://www.idf.org/component/attachments/attachments.html?id=1405&task=download. Accessed 9 Jan 2019.
3. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19.
4. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59:365–73.
5. Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin and resveratrol in rats. Hum Exp Toxicol. 2015;34:100–13.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献