Resistance exercising on unstable surface leads to Pupil Dilation

Author:

Claußen LisaORCID,Heidelbach Tabea

Abstract

Abstract Background Chronic resistance training and acute resistance exercises improve physical performance and can enhance cognitive performance. However, there is still uncertainty about the mechanism(s) responsible for cognitive improvement following resistance training and exercise. Recent findings suggest that resistance exercise has metabolic as well as cognitive demands, which potentially activate similar neural circuitry associated with higher-order cognitive function tasks. Exercising on unstable devices increases the coordinative and metabolic demands and thus may further increase cognitive activation during resistance exercise. The measurement of pupil diameter could provide indications of cognitive activation and arousal during resistance exercise. Pupil dilation is linked to the activity in multiple neuromodulatory systems (e.g., activation of the locus coeruleus and the release of the neurotransmitter norepinephrine (LC-NE system)), which are involved in supporting processes for executive control. Therefore, the purpose of this study was to compare the cognitive activation measured by pupil diameter during an acute bout of resistance exercise on stable and unstable surfaces. Methods 18 participants (23.5 ± 1.5 years; 10 females) performed ten kettlebell squats in a preferred repetition velocity in stable and unstable (BOSU® Balance Trainer) ground conditions. Pupil diameter was recorded with eye tracking glasses (SMI ETG) during standing (baseline) and during squatting. Raw pupil data were cleaned of artifacts (missing values were linearly interpolated) and subjected to a subtractive baseline correction. A student t-test was used to compare mean pupil diameter between ground conditions. Results The mean pupil diameter was significantly greater during squats in the unstable condition than in the stable condition, t (17) = -2.63, p =.018, Cohen’s dZ = -0.62; stable: 0.49 ± 0.32 mm; unstable: 0.61 ± 0.25 mm). Conclusion As indicated by pupil dilation, the use of unstable devices can increase the cognitive activation and effort during acute bouts of resistance exercise. Since pupil dilation is only an indirect method, further investigations are necessary to describe causes and effects of neuromodulatory system activity during resistance exercise. Resistance training with and without surface instability can be recommended to people of all ages as a physically and cognitively challenging training program contributing to the preservation of both physical and cognitive functioning.

Funder

Universität Kassel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3