Effect of long-term application of bioorganic fertilizer on the soil property and bacteria in rice paddy

Author:

Li Zu-ren,Luo Si-quan,Peng Ya-jun,Jin Chen-zhong,Liu Du-cai

Abstract

AbstractThe application of novel bioorganic fertilizer (BIO) has been established as a weed biocontrol strategy, and reduce herbicides pollution and negatively effects on agricultural ecosystems. However, its long-term influences on soil bacterial communities are unknown. Here, 16 S rRNA sequencing to identify the changes that occur in soil bacterial community and enzyme under BIO treatments after five years in a field experiment. BIO application effectively controlled weeds, however no obvious differences between treatments were observed under BIO-50, BIO-100, BIO-200 and BIO-400 treatment. Anaeromyxobacter and Clostridium_ sensu_ stricto_1 were the two dominant genera among BIO-treated soil samples. The BIO-800 treatment had a slight influence on the species diversity index, which was more remarkable after five years. The seven significantly-different genera between BIO-800 treatment and untreated soils included C._sensu_stricto_1, Syntrophorhabdus, Candidatus_Koribacter, Rhodanobacter, Bryobacter, Haliangium, Anaeromyxobacter. In addition, BIO application had different effects on soil enzymatic activities and chemical properties. The extractable P and pH saliency correlated with Haliangium and C._Koribacter, and C._sensu_stricto_1 observably correlated with exchangeable K, hydrolytic N and organic matter. Taken together, our data suggest that BIO application effectively controlled weeds and a slight influence on soil bacterial communities and enzymes. These findings expand our knowledge of the application of BIO as widely used as a sustainable weed control in rice paddy.

Funder

National Key Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3