Abstract
AbstractScreening of gene-specific amplicons from metagenomes (S-GAM) is an efficient technique for the isolation of homologous genes from metagenomes. Using the S-GAM approach, we targeted multi-copper oxidase (MCO) genes including laccase and bilirubin oxidase (BOX) in soil and compost metagenomes, and successfully isolated novel MCO core regions. These core enzyme genes shared approximately 70% identity with that of the putative MCO from Micromonospora sp. MP36. According to the principle of S-GAM, the N- and C-terminal regions of the deduced products of the mature gene come from the known parent gene, which should be homologous and compatible with the target gene. We constructed two different MCO hybrid genes using Bacillus subtilis BOX and Micromonospora sp. MP36 MCO, to give Bs-mg-mco and Mic-mg-mco, respectively. The constructed chimeric MCO genes were fused with the maltose-binding protein (MBP) gene at the N-terminus for expression in Escherichia coli cells. We found that MBP-Mic-mg-MCO/Mic-mg-MCO possessed the characteristic properties of laccase, although MBP-Bs-mg-MCO had no activity. This novel laccase (Mic-mg-MCO) demonstrated unique substrate specificity, sufficient activity at neutral pH, and high thermal stability, which are suitable properties for its use as a laccase biocatalyst.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference40 articles.
1. Amachi S, Muramatsu Y, Akiyama Y, Miyazaki K, Yoshiki S, Kamagata Y, Ban-nai T, Shinoyama H, Fuji T (2005) Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters. Microbial Ecol 49:547–557
2. Aniszewski T, Lieberei R, Gulewicz K (2008) Research on catecholases, laccases and cresolases in plants. Recent progress and future needs. Acta Biol Cracov Bot 50:7–18
3. Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, Mandic-Mulec I (2017) The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotecnol 101:6261–6276
4. Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242
5. Brijwant K, Rigdon A, Vadlami PV (2010) Fungal laccases: production, function, and application in food processing. Enzyme Res 2010:149748
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献