Sodium nitrate has no detrimental effect on milk fatty acid profile and rumen bacterial population in water buffaloes

Author:

Xie Fang,Tang Zhenhua,Liang Xin,Wen Chongli,Li Mengwei,Guo Yanxia,Peng Kaiping,Yang ChengjianORCID

Abstract

AbstractThis study evaluated the influence of dietary sodium nitrate on ruminal fermentation profiles, milk production and composition, microbial populations and diversity in water buffaloes. Twenty-four female water buffaloes were randomly divided into four groups and fed with 0, 0.11, 0.22, 044 g sodium nitrate per kg body weight diets, respectively. Results showed that the concentration of acetate, propionate, butyrate and total VFA in all sodium nitrate–adapted water buffaloes were greater than the control group (P  < 0.05). Although the milk fatty acids value at 0.11 g sodium nitrate/kg/d were slightly lower than other treatments, no significant differences were observed among different treatments (P  > 0.05). Compared to the control group, the archaea richness (ace and chao1) and diversity (Shannon index) indices were increased by nitrate supplementation (P  < 0.05). Compared with the control group, sodium nitrate did not affect bacterial abundance at the phylum and genus level, but the relative abundance of the methanogen genera was greatly changed. There was a tendency for Methanobrevibacter to decrease in the sodium nitrate group (P  = 0.091). Comparisons of archaea communities by PCoA analysis showed significant separation between the control group and nitrate treatments (P  = 0.025). It was concluded that added 0.11–0.44 g sodium nitrate/kg of body weight increased the rumen VFA production and archaeal diversity of water buffaloes but had no detrimental effect on milk yield or composition, fatty acids profile, rumen methanogen or Butyrivibrio group population related to biohydrogenation.

Funder

National Natural Science Foundation of China

National Modern Agricultural Industry Technology System Guangxi Dairy Buffalo Innovation Team Project

Natural Science Foundation of Guangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3