Abstract
AbstractBlue light is an important environmental factor that induces mushroom primordium differentiation and fruiting body development. Although blue-light treatment has been applied for the production of oyster mushroom (Pleurotus ostreatus), the blue-light response mechanisms of P. ostreatus still remain unclear. In the present study, we exposed the primordium of P. ostreatus to blue-light, red-light, and dark conditions for 7 days. Subsequently, comparative transcriptomics analysis of the stipe, pileus, and gill under the three light conditions was performed to reveal the gene expression response mechanism of P. ostreatus to blue light and red light. The results showed that blue light enhanced the growth and development of all the three organs of P. ostreatus, especially the pileus. In contrast, red light slightly (non-significantly) inhibited pileus growth. When compared with red-light and dark treatments, blue-light treatment significantly upregulated gene expression involved in glycolysis/gluconeogenesis, the pentose phosphate pathway and the peroxisome in the pileus, but not in the gill or stipe. Most of the glycolysis and pentose phosphate pathway genes were upregulated in the pileus by blue light. When compared with dark treatment, red-light treatment downregulated the expression of many respiration metabolism genes in the pileus. These results revealed that blue light enhanced the activation of glycolysis and the pentose phosphate pathway, whereas red light weakened glycolysis and pentose phosphate pathway activation. The conclusion can be drawn that blue light improved P. ostreatus fruiting body (particularly, the pileus) growth rate via enhancement of glycolysis and the pentose phosphate pathway.
Funder
Postdoctoral Research Foundation of China
Special Fund for Agro-scientifc Research in the Public Interest
Program of Creation and Utilization of Germplasm of Mushroom Crop of “111” Project
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献