Bacterial diversity associated with volatile compound accumulation in pit mud of Chinese strong-flavor baijiu pit

Author:

Shoubao Yan,Yonglei Jia,Qi Zhang,Shunchang Pu,Cuie Shi

Abstract

AbstractPit mud quality is a key parameter that impacts the quality of Chinese strong-flavor Baijiu production.This study was developed to explore spatial bacterial community distributions and the relationships between these distributions and the volatile compound accumulation within the pit mud used in the production of Chinese strong-flavor Baijiu. The results revealed Lactobacillus pasteurii and Limnochorda pilosa were found to be the dominant bacteria present in the upper wall, middle wall, and bottom pit mud layers, whereas the Clostridium genus was detectable at high levels in the lower layer of the pit wall and played a role in contributing to the overall aroma and flavor compounds in produced Chinese strong-flavor Baijiu, with Clostridium abundance being strongly correlated with caproic acid, ethyl caproate, ethyl butyrate, and hexanol levels as well as moderately correlated with butyric acid levels. The abundance of the Lactobacillus genus was positively correlated with levels of ethyl lactate, 1-butanol, and 2,3-butanediol. Limnochorda pilosa was closely associated with ethyl acetate levels. Additionally, the correlations between bacterial communities and chemical properties also investigated, and the results demonstrated PO43−, total carbon, K+, humus, NH4+-N, and Mg2+ levels significantly affected the bacterial community structure of pit mud, and they were positively correlated with the relative abundance of Clostridium. Together, these findings can serve as a foundation for future studies exploring the mechanisms whereby volatile compounds accumulate in different pit mud layers, which facilitates the fermentation regulation and pit mud quality improvement of Chinese strong-flavor Baijiu.

Funder

The academic funding for top talents in disciplines (Specialties) of Anhui Provincial Higher Education Institutes

The Major natural science research projects of Anhui Universities

Key Research Institute of Humanities and Social Sciences in Sichuan Province

The innovation team of brewing industry microbial resources of Huainan normal university

Huainan science and technology planning project

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3