Abstract
AbstractRalstonia eutropha H16 is a chemolithoautotrophic bacterium with O2-tolerant hydrogenase (Hyds) enzymes. Hyds are expressed in the presence of gas mixtures (H2, O2, CO2) or under energy limitation and stress conditions. O2-tolerant Hyds are promising candidates as anode biocatalysts in enzymatic fuel cells (EFCs). Supplementation of 0.5% (w/v) yeast extract to the fructose-nitrogen (FN) growth medium enhanced H2-oxidizing Hyd activity ~ sixfold. Our study aimed to identify key metabolites (l-amino acids (l-AAs) and vitamins) in yeast extract that are necessary for the increased synthesis and activity of Hyds. A decrease in pH and a reduction in ORP (from + 240 ± 5 mV to − 180 mV ± 10 mV values) after 24 h of growth in the presence of AAs were observed. Compared to the FN-medium control, supplementation of 7.0 μmol/ml of the l-AA mixture stimulated the growth of bacteria ~ 1.9 to 2.9 fold, after 72 h. The whole cells’ H2-oxidizing Hyd activity was not observed in control samples, whereas the addition of l-AAs, mainly glycine resulted in a maximum of ~ 22 ± 0.5 and 15 ± 0.3 U, g CDW−1 activity after 24 h and 72 h, respectively. Our results suggest a correlation between ORP, pH, and function of Hyds in R. eutropha H16 in the presence of key l-AAs. l-AAs used in small amounts can be proposed as signaling molecules or key components of Hyd maturation. These results are important for the optimization of O2-tolerant Hyds production as anode biocatalysts.
Funder
Ministry of Education and Science
Enterprise Incubator Foundation
Armenian National Science and Education Fund
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献