Poly(3-Hydroxybutyrate) Biosynthesis from [U-13C6]D-Glucose by Ralstonia eutropha NCIMB 11599 and Recombinant Escherichia coli

Author:

Sivashankari Ramamoorthi M.1,Miyahara Yuki1ORCID,Tsuge Takeharu1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

Abstract

The use of stable isotope-labeled polymers in in situ biodegradation tests provides detailed information on the degradation process. As isotope-labeled raw chemicals are generally expensive, it is desirable to prepare polymer samples with high production yields and high isotope-labeling ratios. The biodegradable plastic poly[(R)-3-hydroxybutyrate)] (P(3HB)) is produced by microorganisms. In this study, to produce carbon 13 (13C)-labeled P(3HB) from [U-13C6]D-glucose (13C-glucose), the culture conditions needed for high production yields and high 13C-labeling ratios were investigated using Ralstonia eutropha NCIMB 11599 and recombinant Escherichia coli JM109. We found that over 10 g/L of P(3HB) could be obtained when these microorganisms were cultured in Luria-Bertani (LB3) medium containing 3 g/L NaCl and 40 g/L 13C-glucose, while 1.4–4.7 g/L of P(3HB) was obtained when a mineral salt (MS) medium containing 20 g/L 13C-glucose was used. The 13C-labeling ratio of P(3HB) was determined by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry (GC-MS), and both analytical methods yielded nearly identical results. High 13C-labeling ratios (97.6 atom% by GC-MS) were observed in the MS medium, whereas low 13C-labeling ratios (88.8–94.4 atom% by GC-MS) were observed in the LB3 medium. Isotope effects were observed for the P(3HB) content in cells cultured in the LB3 medium and the polydispersity of P(3HB).

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3