Gut microbial diversity among Yorkshire, Landrace and Duroc boars and its impact on semen quality
-
Published:2022-12-23
Issue:1
Volume:12
Page:
-
ISSN:2191-0855
-
Container-title:AMB Express
-
language:en
-
Short-container-title:AMB Expr
Author:
Li Jiawei,Li Yuhang,Cheng Meixia,Ye Fengchun,Li Wen,Wang Cong,Huang Yuxuan,Wu Yan,Xuan Rui,Liu Guanyuan,Huang Jianhua
Abstract
AbstractThe gut microbiota plays an important role in pig health and performance, particularly in host growth and fecundity. In present study, the characteristics and diversity of gut microbiota in fine purebred boars from three-way crossbred “Duroc×Landrace×Yorkshire” pigs were investigated using 16 S rRNA gene sequencing. The results showed that the three breeds of boars shared similar gut microbiota, yet there remain slight differences at the family/genus level. At the family level, Ruminococcaceae, Streptococcaceae and Lactobacillaceae have the highest abundance in Landrace, while Rikenellaceae and f_p_251_o5 have the highest abundance in Duroc. The abundance of Prevotellaceae, Lachnospiraceae and Spirochaetaceae in intestinal of Yorkshire were higher than that of Landrace and Duroc. In addition, ten and six biomarkers were identified in the microbiota across breeds and months of age, respectively. Moreover, we evaluated the effect of gut microbiota on boar semen quality, revealing that Duroc had the strongest sperm vitality, significantly associated with the genus Rikenellaceae_PC9_gut_group. In addition, the spermatogenesis ability and sperm production improved gradually along with increase of age. In conclusion, this study provides a reference for understanding the gut microbiota composition of purebred boars used for three-way crosses and their impact on semen performance.
Funder
Natural Science Foundation for Young Scientists of Shanxi Province JiangXi Province Human Resources and Social Security Department
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference42 articles.
1. Bergamaschi M, Tiezzi F, Howard J, Huang YJ, Gray KA, Schillebeeckx C, McNulty NP, Maltecca C (2020) Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome 8:1–15. https://doi.org/10.1186/s40168-020-00888-9 2. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 3. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodriguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vazquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9 4. Chen C, Fang S, Wei H, He M, Fu H, Xiong X, Zhou Y, Wu J, Gao J, Yang H, Huang L (2021) Prevotella copri increases fat accumulation in pigs fed with formula diets. Microbiome 9:175. https://doi.org/10.1186/s40168-021-01110-0 5. Chen H, Mao X, He J, Yu B, Huang Z, Yu J, Zheng P, Chen D (2013) Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr 110:1837–1848. https://doi.org/10.1017/S0007114513001293
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|