Both TRIM5α and TRIMCyp have only weak antiviral activity in canine D17 cells

Author:

Bérubé Julie,Bouchard Amélie,Berthoux Lionel

Abstract

Abstract Background TRIM5α, which is expressed in most primates and the related TRIMCyp, which has been found in one of the New World monkey species, are antiviral proteins of the TRIM5 family that are able to intercept incoming retroviruses early after their entry into cells. The mechanism of action has been partially elucidated for TRIM5α, which seems to promote premature decapsidation of the restricted retroviruses. In addition, through its N-terminal RING domain, TRIM5α may sensitize retroviruses to proteasome-mediated degradation. TRIM5α-mediated restriction requires a physical interaction with the capsid protein of targeted retroviruses. It is unclear whether other cellular proteins are involved in the inhibition mediated by TRIM5α and TRIMCyp. A previous report suggested that the inhibition of HIV-1 by the rhesus macaque orthologue of TRIM5α was inefficient in the D17a canine cell line, suggesting that the cellular environment was important for the restriction mechanism. Here we investigated further the behavior of TRIM5α and TRIMCyp in the D17 cells. Results We found that the various TRIM5α orthologues studied (human, rhesus macaque, African green monkey) as well as TRIMCyp had poor antiviral activity in the D17 cells, despite seemingly normal expression levels and subcellular distribution. Restriction of both HIV-1 and the distantly related N-tropic murine leukemia virus (N-MLV) was low in D17 cells. Both TRIM5αrh and TRIMCyp promoted early HIV-1 decapsidation in murine cells, but weak levels of restriction in D17 cells correlated with the absence of accelerated decapsidation in these cells and also correlated with normal levels of cDNA synthesis. Fv1, a murine restriction factor structurally unrelated to TRIM5α, was fully functional in D17 cells, showing that the loss of activity was specific to TRIM5α/TRIMCyp. Conclusion We show that D17 cells provide a poor environment for the inhibition of retroviral replication by proteins of the TRIM5 family. Because both TRIM5α and TRIMCyp are poorly active in these cells, despite having quite different viral target recognition domains, we conclude that a step either upstream or downstream of target recognition is impaired. We speculate that an unknown factor required for TRIM5α and TRIMCyp activity is missing or inadequately expressed in D17 cells.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3