Author:
Willemsen Nicole M,Hitchen Eleanor M,Bodetti Tracey J,Apolloni Ann,Warrilow David,Piller Sabine C,Harrich David
Abstract
Abstract
Background:
Protein methylation is recognized as a major protein modification pathway regulating diverse cellular events such as protein trafficking, transcription, and signal transduction. More recently, protein arginine methyltransferase activity has been shown to regulate HIV-1 transcription via Tat. In this study, adenosine periodate (AdOx) was used to globally inhibit protein methyltransferase activity so that the effect of protein methylation on HIV-1 infectivity could be assessed.
Results:
Two cell culture models were used: HIV-1-infected CEM T-cells and HEK293T cells transfected with a proviral DNA plasmid. In both models, AdOx treatment of cells increased the levels of virion in culture supernatant. However, these viruses had increased levels of unprocessed or partially processed Gag-Pol, significantly increased diameter, and displayed reduced infectivity in a MAGI X4 assay. AdOx reduced infectivity equally in both dividing and non-dividing cells. However, infectivity was further reduced if Vpr was deleted suggesting virion proteins, other than Vpr, were affected by protein methylation. Endogenous reverse transcription was not inhibited in AdOx-treated HIV-1, and infectivity could be restored by pseudotyping HIV with VSV-G envelope protein. These experiments suggest that AdOx affects an early event between receptor binding and uncoating, but not reverse transcription.
Conclusion:
Overall, we have shown for the first time that protein methylation contributes towards maximal virus infectivity. Furthermore, our results also indicate that protein methylation regulates HIV-1 infectivity in a complex manner most likely involving the methylation of multiple viral or cellular proteins and/or multiple steps of replication.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference57 articles.
1. Aletta JM, Cimato TR, Ettinger MJ: Protein methylation: a signal event in post-translational modification. Trends in Biochemical Sciences. 1998, 23 (3): 89-91. 10.1016/S0968-0004(98)01185-2.
2. Clarke S: Protein methylation. Current Opinion in Cell Biology. 1993, 5 (6): 977-983. 10.1016/0955-0674(93)90080-A.
3. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA: Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 2004, 306 (5694): 279-283. 10.1126/science.1101400.
4. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T: Histone deimination antagonizes arginine methylation. Cell. 2004, 118 (5): 545-553. 10.1016/j.cell.2004.08.020.
5. Zhang J, Dai J, Zhao E, Lin Y, Zeng L, Chen J, Zheng H, Wang Y, Li X, Ying K, Xie Y, Mao Y: cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type VI. Acta Biochim Pol. 2004, 51 (4): 1051-1058.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献