Shutdown of HIV-1 Transcription in T Cells by Nullbasic, a Mutant Tat Protein

Author:

Jin Hongping1,Li Dongsheng1,Sivakumaran Haran1,Lor Mary1,Rustanti Lina1,Cloonan Nicole2,Wani Shivangi2,Harrich David1

Affiliation:

1. Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia

2. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia

Abstract

ABSTRACT Nullbasic is a derivative of the HIV-1 transactivator of transcription (Tat) protein that strongly inhibits HIV-1 replication in lymphocytes. Here we show that lentiviral vectors that constitutively express a Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein by the eEF1α promoter led to robust long-term inhibition of HIV-1 replication in Jurkat cells. Although Jurkat-NB-ZSG1 cells were infected by HIV-1, no virus production could be detected and addition of phorbol ester 12-myristate 13-acetate (PMA) and JQ1 had no effect, while suberanilohydroxamic acid (SAHA) modestly stimulated virus production but at levels 300-fold lower than those seen in HIV-1-infected Jurkat-ZSG1 cells. Virus replication was not recovered by coculture of HIV-1-infected Jurkat-NB-ZSG1 cells with uninfected Jurkat cells. Latently infected Jurkat latent 6.3 and ACH2 cells treated with latency-reversing agents produced measurable viral capsid (CA), but little or none was made when they expressed NB-ZSG1. When Jurkat cells chronically infected with HIV-1 were transduced with lentiviral virus-like particles conveying NB-ZSG1, a >3-log reduction in CA production was observed. Addition of PMA increased virus CA production but at levels 500-fold lower than those seen in nontransduced Jurkat cells. Transcriptome sequencing analysis confirmed that HIV-1 mRNA was strongly inhibited by NB-ZSG1 but indicated that full-length viral mRNA was made. Analysis of HIV-1-infected Jurkat cells expressing NB-ZSG1 by chromatin immunoprecipitation assays indicated that recruitment of RNA polymerase II (RNAPII) and histone 3 lysine 9 acetylation were inhibited. The reduction of HIV-1 promoter-associated RNAPII and epigenetic changes in viral nucleosomes indicate that Nullbasic can inhibit HIV-1 replication by enforcing viral silencing in cells. IMPORTANCE HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces measurable viral loads in patients below detectable levels. However, therapy interruption leads to viral rebound due to latently infected cells that serve as a source of continued viral infection. Interest in strategies leading to a functional cure of HIV infection by permanent viral suppression, which may be achievable, is growing. Here we show that a mutant form of the HIV-1 Tat protein, referred to as Nullbasic, can inhibit HIV-1 transcription in infected Jurkat T cell to undetectable levels. Analysis shows that Nullbasic alters the epigenetic state of the HIV-1 long terminal repeat promoter, inhibiting its association with RNA polymerase II. This study indicates that key cellular proteins and pathways targeted here can silence HIV-1 transcription. Further elucidation could lead to functional-cure strategies by suppression of HIV transcription, which may be achievable by a pharmacological method.

Funder

Department of Health | National Health and Medical Research Council

Australian Research Council

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3