Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to Human Immunodeficiency Virus type 1 infection
-
Published:2009-06-09
Issue:1
Volume:6
Page:
-
ISSN:1742-4690
-
Container-title:Retrovirology
-
language:en
-
Short-container-title:Retrovirology
Author:
Kuang Yi-Qun,Tang Xia,Liu Feng-Liang,Jiang Xue-Long,Zhang Ya-Ping,Gao Guangxia,Zheng Yong-Tang
Abstract
Abstract
Background
The pig-tailed macaques are the only Old World monkeys known to be susceptible to human immunodeficiency virus type 1 (HIV-1) infection. We have previously reported that the TRIM5-Cyclophilin A (TRIMCyp) fusion in pig-tailed macaques (Macaca nemestrina) is dysfunctional in restricting HIV-1, which may explain why pig-tailed macaques are susceptible to HIV-1 infection. Similar results have also been reported by other groups. However, according to the current primate taxonomy, the previously reported M. nemestrina are further classified into three species, which all belong to the Macaca spp. This calls for the need to look into the previous studies in more details.
Results
The local species Northern pig-tailed macaque (M. leonina) was analyzed for the correlation of TRIM5 structure and HIV-1 infection. Eleven M. leonina animals were analyzed, and all of them were found to possess TRIM5-CypA fusion at the TRIM5 locus. The transcripts encoding the dysfunctional TRIM5-CypA should result from the G-to-T mutation in the 3'-splicing site of intron 6. Polymorphism in the putative TRIMCyp recognition domain was observed. The peripheral blood mononuclear cells (PBMCs) of M. leonina were susceptible to HIV-1 infection. Consistent with the previous results, expression of the M. leonina TRIMCyp in HeLa-T4 cells rendered the cells resistant to HIV-2ROD but not to SIVmac239 infection.
Conclusion
The susceptibility of M. leonina to HIV-1 infection is due to the dysfunctional TRIM5-CypA fusion in the TRIM5 locus. This finding should broaden our perspective in developing better HIV/AIDS non-human primate animal models.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference31 articles.
1. Simon F, Mauclère P, Roques P, Loussert-Ajaka I, Müller-Trutwin MC, Saragosti S, Georges-Courbot MC, Barré-Sinoussi F, Brun-Vézinet F: Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat Med. 1998, 4 (9): 1032-1037. 10.1038/2017. 2. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH: Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999, 397 (6718): 436-441. 10.1038/17130. 3. Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JF, Sharp PM, Shaw GM, Peeters M, Hahn BH: Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006, 313 (5786): 523-526. 10.1126/science.1126531. 4. Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J: Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol. 1999, 73 (12): 10020-10028. 5. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J: The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature. 2004, 427 (6977): 848-853. 10.1038/nature02343.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|