Characterization of the human endogenous retrovirus K Gag protein: identification of protease cleavage sites

Author:

Kraus Benjamin,Boller Klaus,Reuter Andreas,Schnierle Barbara S

Abstract

Abstract Background Viral genomes of the human endogenous retrovirus K (HERV-K) family are integrated into the human chromosome and are transmitted vertically as Mendelian genes. Although viral particles are released by some transformed cells, they have never been shown to be infectious. In general, gammaretroviruses are produced as immature viral particles by accumulation of the Gag polyproteins at the plasma membrane, which subsequently bud from the cell surface. After release from the cell, Gag is further processed by proteolytic cleavage by the viral protease (PR), which results in morphologically mature particles with condensed cores. The HERV-K Gag polyprotein processing and function has not yet been precisely determined. Results We generated a recombinant poxvirus, encoding the human endogenous retrovirus K consensus gag-pro-pol genes (MVA-HERV-Kcon) and obtained high levels of HERV-K Gag expression. The resulting retroviral particle assembled at the plasma membrane, as is typical for gammaretroviruses; and immature as well as mature retrovirus-like particles (VLPs) were observed around the infected cells. VLPs were purified, concentrated and separated by two-dimensional gel electrophoresis. The HERV-K Gag fragments were identified by mass spectroscopy and N-terminal sequencing which revealed that HERV-K Gag is processed into MA, a short spacer peptide, p15, CA and NC. Conclusion The cleavage sites of HERV-K Gag were mapped and found to be highly conserved among HERV-K genomes. The consensus HERV-K gag gene used in this study is known to support viral, infectivity [1], and thus the cleavage sites that were mapped in this study for all the Gag components are relevant for HERV-K infectivity.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3