HIV-2 Protease resistance defined in yeast cells

Author:

M'Barek Najoua Ben,Audoly Gilles,Raoult Didier,Gluschankof Pablo

Abstract

Abstract Background Inhibitors of the HIV-1 Protease currently used in therapeutic protocols, have been found to inhibit, although at higher concentrations, the HIV-2 encoded enzyme homologue. Similar to observations in HIV-1 infected individuals, therapeutic failure has also been observed for some patients infected with HIV-2 as a consequence of the emergence of viral strains resistant to the anti-retroviral molecules. In order to be able to define the specific mutations in the Protease that confer loss of susceptibility to Protease Inhibitors, we set up an experimental model system based in the expression of the viral protein in yeast. Results Our results show that the HIV-2 Protease activity kills the yeast cell, and this process can be abolished by inhibiting the viral enzyme activity. Since this inhibition is dose dependent, IC50 values can be assessed for each anti-retroviral molecule tested. We then defined the susceptibility of HIV-2 Proteases to Protease Inhibitors by comparing the IC50 values of Proteases from 7 infected individuals to those of a sensitive wild type laboratory adapted strain. Conclusion This functional assay allowed us to show for the first time that the L90M substitution, present in a primary HIV-2 isolate, modifies the HIV-2 Protease susceptibility to Saquinavir but not Lopinavir. Developing a strategy based on the proposed yeast expressing system will contribute to define amino acid substitutions conferring HIV-2 Protease resistance.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3