Author:
Kumar Gautam,Kushwaha Hemant Ritturaj,Panjabi-Sabharwal Vaishali,Kumari Sumita,Joshi Rohit,Karan Ratna,Mittal Shweta,Pareek Sneh L Singla,Pareek Ashwani
Abstract
Abstract
Background
Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented.
Results
We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P.
Conclusion
We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species.
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Cobbett CS, Goldsbrough P: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Physiol Mol Biol. 2002, 53: 159-182.
2. Cherian GM, Chan HM: Biological functions of metallothioneins-a review. Metallothionein III: Biological Roles and Medical Implications. Edited by: Suzuki KT, Imura N, Kimura M. 1993, Birkhauser Verlag, Boston, 87-109.
3. Binz PA, Kagi JHR: Metallothionein: molecular evolution and classification. Metallothionein IV. Edited by: Klaassen C. 1999, Basel, Switzerland: Birkhauser Verlag, 7-13.
4. Zimeri AM, Dhankher OP, McCaig B, Meagher RB: The plant MT1 metallothioneins are stabilized by binding cadmium and are required for cadmium tolerance and accumulation. Plant Mol Biol. 2005, 58: 839-855. 10.1007/s11103-005-8268-3.
5. Freisinger E: Metallothioneins in plants. Met Ions Life Sci. 2009, 5: 107-153.
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献