Physiological and Proteome Analysis of the Effects of Chitosan Oligosaccharides on Salt Tolerance of Rice Seedlings

Author:

Qian Xiangyu1,He Yaqing1,Zhang Lu1,Li Xianzhen1,Tang Wenzhu1

Affiliation:

1. School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China

Abstract

Rice (Oryza sativa L.) is an important social-economic crop, and rice seedlings are easily affected by salt stress. Chitosan oligosaccharide (COS) plays a positive role in promoting plant growth and development. To gain a better understanding of the salt tolerance mechanism of rice under the action of COS, Nipponbare rice seedlings were selected as the experimental materials, and the physiological and biochemical indexes of rice seedlings in three stages (normal growth, salt stress and recovery) were measured. Unlabelled quantitative proteomics technology was used to study differential protein and signaling pathways of rice seedlings under salt stress, and the mechanism of COS to improve rice tolerance to salt stress was elucidated. Results showed that after treatment with COS, the chlorophyll content of rice seedlings was 1.26 times higher than that of the blank group (CK). The root activity during the recovery stage was 1.46 times that of the CK group. The soluble sugar in root, stem and leaf increased by 53.42%, 77.10% and 9.37%, respectively. The total amino acid content increased by 77% during the stem recovery stage. Furthermore, the malondialdehyde content in root, stem and leaf increased by 21.28%, 26.67% and 32.69%, respectively. The activity of oxide dismutase (SOD), peroxidase (POD) and oxygenase (CAT) were increased. There were more differentially expressed proteins in the three parts of the experimental group than in the CK group. Gene Ontology (GO) annotation of these differentially expressed proteins revealed that the experimental group was enriched for more entries. Then, through the Kyoto Encyclopedia of Genes and Genomes (KEGG), the top ten pathways enriched with differentially expressed proteins in the two groups (COS and CK groups) were utilized, and a detailed interpretation of the glycolysis and photosynthesis pathways was provided. Five key proteins, including phosphofructokinase, fructose bisphosphate aldolases, glycer-aldehyde-3-phosphate dehydrogenase, enolase and pyruvate kinase, were identified in the glycolysis pathway. In the photosynthesis pathway, oxygen evolution enhancement proteins, iron redox proteins and ferredoxin-NADPH reductase were the key proteins. The addition of COS led to an increase in the abundance of proteins, a response of rice seedlings to salt stress. COS helped rice seedlings resist salt stress. Furthermore, using COS as biopesticides and biofertilizers can effectively increase the utilization of saline-affected farmland, thereby contributing to the alleviating of the global food crisis.

Funder

Basic Research Projects of Liaoning Higher Education In-stitutions

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3