Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putidastrain BTP1

Author:

Akram Adam,Ongena Marc,Duby Francéline,Dommes Jacques,Thonart Philippe

Abstract

Abstract Background Previous studies showed the ability of Pseudomonas putida strain BTP1 to promote induced systemic resistance (ISR) in different host plants. Since ISR is long-lasting and not conducive for development of resistance of the targeted pathogen, this phenomenon can take part of disease control strategies. However, in spite of the numerous examples of ISR induced by PGPR in plants, only a few biochemical studies have associated the protective effect with specific host metabolic changes. Results In this study, we showed the protective effect of this bacterium in tomato against Botrytis cinerea. Following treatment by P. putida BTP1, analyses of acid-hydrolyzed leaf extracts showed an accumulation of antifungal material after pathogen infection. The fungitoxic compounds thus mainly accumulate as conjugates from which active aglycones may be liberated through the activity of hydrolytic enzymes. These results suggest that strain BTP1 can elicit systemic phytoalexin accumulation in tomato as one defence mechanism. On another hand, we have shown that key enzymes of the lipoxygenase pathway are stimulated in plants treated with the bacteria as compared with control plants. Interestingly, this stimulation is observed only after pathogen challenge in agreement with the priming concept almost invariably associated with the ISR phenomenon. Conclusion Through the demonstration of phytoalexin accumulation and LOX pathway stimulation in tomato, this work provides new insights into the diversity of defence mechanisms that are inducible by non-pathogenic bacteria in the context of ISR.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3