Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

Author:

Fernandez Paula,Di Rienzo Julio,Fernandez Luis,Hopp H Esteban,Paniego Norma,Heinz Ruth A

Abstract

Abstract Background Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags) were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion Eighty genes isolated from organ-specific cDNA libraries were identified as candidate genes for sunflower early response to low temperatures and salinity. Microarray profiling of chilling and NaCl-treated sunflower leaves revealed dynamic changes in transcript abundance, including transcription factors, defense/stress related proteins, and effectors of homeostasis, all of which highlight the complexity of both stress responses. This study not only allowed the identification of common transcriptional changes to both stress conditions but also lead to the detection of stress-specific genes not previously reported in sunflower. This is the first organ-specific cDNA fluorescence microarray study addressing a simultaneous evaluation of concerted transcriptional changes in response to chilling and salinity stress in cultivated sunflower.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference124 articles.

1. National Sunflower Association. [http://www.sunflowernsa.com/stats/table.asp?contentID=109&htmlID=74&submit170=View&submit.x=57&submit.y=12)]

2. Connor D, Hall A: Sunflower physiology. Monograph No. 35. Madison, WI: ASA, CSSA, SSSA. 1997

3. Miller J, Gulya T: Registration of four maintainer (HA 382 to HA 385) and four restorer (RHA 386 to RHA 389) sunflower germplasm lines. Crop Science. 1995, 35: 286-

4. Paniego N, Heinz R, Fernandez P, Talia P, Nishinakamasu V, Hopp H: Sunflower. Genome Mapping and Molecular Breeding in Plants 2nd edition. Edited by: Kole C. Berlin Heidelberg: Springer-Verlag; 2007,: 153-177.

5. Pradeep KA, Parinita A, Reddy M, Sopory Sudhir K: Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports. 2006, 25 (12): 1263-10.1007/s00299-006-0204-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3