Author:
Ehlting Jürgen,Sauveplane Vincent,Olry Alexandre,Ginglinger Jean-François,Provart Nicholas J,Werck-Reichhart Danièle
Abstract
Abstract
Background
Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s) is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism.
Results
We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here.
Conclusion
The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling.
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Nelson D: Plant cytochrome P450s from moss to poplar. Phytochem Rev. 2006, 5: 193-204. 10.1007/s11101-006-9015-3.
2. Schuler M, Duan H, Bilgin M, Ali S: Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev. 2006, 5: 205-237. 10.1007/s11101-006-9035-z.
3. Werck-Reichhart D: Cytochromes P450. The Arabidopsis book. Edited by: Somerville C and Meyerowitz E. 2002, Rockville MD, American Society of Plant Biologists, Rockville, MD, [http://www.bioone.org/perlserv/?request=get-document&issn=1543-8120&volume=2&issue=1&page=1]
4. Schuler MA, Werck-Reichhart D: Functional genomics of P450s. Annu Rev Plant Biol. 2003, 54: 629-667. 10.1146/annurev.arplant.54.031902.134840.
5. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S: Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 2004, 135: 756-772. 10.1104/pp.104.039826.
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献