Affiliation:
1. Department of Cell & Structural Biology, University of Illinois, Urbana-Champaign, Illinois 61801;
2. Department of Plant Stress Response, Institute of Plant Molecular Biology, CNRS UPR 2357, Université Louis Pasteur, F-67083 Strasbourg Cedex, France;
Abstract
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxicative pathways. Those P450s in biosynthetic pathways play critical roles in the synthesis of lignins, UV protectants, pigments, defense compounds, fatty acids, hormones, and signaling molecules. Those in catabolic pathways participate in the breakdown of endogenous compounds and toxic compounds encountered in the environment. Because of their roles in this wide diversity of metabolic processes, plant P450 proteins and transcripts can serve as downstream reporters for many different biochemical pathways responding to chemical, developmental, and environmental cues. This review focuses initially on defining P450 biochemistries, nomenclature systems, and the relationships between genes in the extended P450 superfamily that exists in all plant species. Subsequently, it focuses on outlining the many approaches being used to assign function to individual P450 proteins and gene loci. The examples of assigned P450 activities that are spread throughout this review highlight the importance of understanding and utilizing P450 sequences as markers for linking biochemical pathway responses to physiological processes.
Subject
Cell Biology,Plant Science,Molecular Biology,Physiology
Cited by
400 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献