Author:
Casao M Cristina,Karsai Ildiko,Igartua Ernesto,Gracia M Pilar,Veisz Otto,Casas Ana M
Abstract
Abstract
Background
Understanding the adaptation of cereals to environmental conditions is one of the key areas in which plant science can contribute to tackling challenges presented by climate change. Temperature and day length are the main environmental regulators of flowering and drivers of adaptation in temperate cereals. The major genes that control flowering time in barley in response to environmental cues are VRNH1, VRNH2, VRNH3, PPDH1, and PPDH2 (candidate gene HvFT3). These genes from the vernalization and photoperiod pathways show complex interactions to promote flowering that are still not understood fully. In particular, PPDH2 function is assumed to be limited to the ability of a short photoperiod to promote flowering. Evidence from the fields of biodiversity, ecogeography, agronomy, and molecular genetics was combined to obtain a more complete overview of the potential role of PPDH2 in environmental adaptation in barley.
Results
The dominant PPDH2 allele is represented widely in spring barley cultivars but is found only occasionally in modern winter cultivars that have strong vernalization requirements. However, old landraces from the Iberian Peninsula, which also have a vernalization requirement, possess this allele at a much higher frequency than modern winter barley cultivars. Under field conditions in which the vernalization requirement of winter cultivars is not satisfied, the dominant PPDH2 allele promotes flowering, even under increasing photoperiods above 12 h. This hypothesis was supported by expression analysis of vernalization-responsive genotypes. When the dominant allele of PPDH2 was expressed, this was associated with enhanced levels of VRNH1 and VRNH3 expression. Expression of these two genes is needed for the induction of flowering. Therefore, both in the field and under controlled conditions, PPDH2 has an effect of promotion of flowering.
Conclusions
The dominant, ancestral, allele of PPDH2 is prevalent in southern European barley germplasm. The presence of the dominant allele is associated with early expression of VRNH1 and early flowering. We propose that PPDH2 promotes flowering of winter cultivars under all non-inductive conditions, i.e. under short days or long days in plants that have not satisfied their vernalization requirement. This mechanism is indicated to be a component of an adaptation syndrome of barley to Mediterranean conditions.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Laurie DA, Pratchett N, Bezant JH, Snape JW: RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley Hordeum vulgare L. cross. Genome. 1995, 38: 575-585. 10.1139/g95-074.
2. Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES: MADS box genes control vernalization-induced flowering in cereals. P Natl Acad Sci USA. 2003, 100: 13099-13104. 10.1073/pnas.1635053100.
3. Flood RG, Halloran GM: The nature and duration of gene action for vernalization response in wheat. Ann Bot. 1984, 53: 363-368.
4. Trevaskis B, Hemming MN, Dennis ES, Peacock WJ: The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 2007, 12: 352-357. 10.1016/j.tplants.2007.06.010.
5. Takahashi R, Yasuda S: Genetics of earliness and growth habit in barley.In Barley Genetics II. Edited by: Nilan RA. Washington State University Press,Pullman, WA; 1971:388-408.
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献