The FLOWERING LOCUS T 5b positively regulates photoperiodic flowering and improves the geographical adaptation of soybean

Author:

Su Qiang12ORCID,Chen Li12,Cai Yupeng12ORCID,Wang Liwei2ORCID,Chen Yingying12,Zhang Jialing12,Liu Luping2,Zhang Yan2,Yuan Shan2,Gao Yang3,Sun Shi2ORCID,Han Tianfu2ORCID,Hou Wensheng12ORCID

Affiliation:

1. National Center for Transgenic Research in Plants, Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China

2. Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China

3. Syngenta Biotechnology (China) Co., Ltd Beijing China

Abstract

AbstractPlants can sense the photoperiod to flower at the right time. As a sensitive short‐day crop, soybean (Glycine max) flowering varies greatly depending on photoperiods, affecting yields. Adaptive changes in soybeans rely on variable genetic loci such as E1 and FLOWERING LOCUS T orthologs. However, the precise coordination and control of these molecular components remain largely unknown. In this study, we demonstrate that GmFT5b functions as a crucial factor for soybean flowering. Overexpressed or mutated GmFT5b resulted in significantly early or later flowering, altering expression profiles for several downstream flowering‐related genes under a long‐day photoperiod. GmFT5b interacts with the transcription factor GmFDL15, suggesting transcriptional tuning of flowering time regulatory genes via the GmFT5b/GmFDL15 complex. Notably, GmFT5a partially compensated for GmFT5b function, as ft5a ft5b double mutants exhibited an enhanced late‐flowering phenotype. Association mapping revealed that GmFT5b was associated with flowering time, maturity, and geographical distribution of soybean accessions, all associated with the E1 locus. Therefore, GmFT5b is a valuable target for enhancing regional adaptability. Natural variants or multiple mutants in this region can be utilized to generate optimized soybean varieties with precise flowering times.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3