Author:
Comino Cinzia,Hehn Alain,Moglia Andrea,Menin Barbara,Bourgaud Frédéric,Lanteri Sergio,Portis Ezio
Abstract
Abstract
Background
The leaves of globe artichoke and cultivated cardoon (Cynara cardunculus L.) have significant pharmaceutical properties, which mainly result from their high content of polyphenolic compounds such as monocaffeoylquinic and dicaffeoylquinic acid (DCQ), and a range of flavonoid compounds.
Results
Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase (HQT) encoding genes have been isolated from both globe artichoke and cultivated cardoon (GenBank accessions DQ915589 and DQ915590, respectively) using CODEHOP and PCR-RACE. A phylogenetic analysis revealed that their sequences belong to one of the major acyltransferase groups (anthranilate N-hydroxycinnamoyl/benzoyltransferase). The heterologous expression of globe artichoke HQT in E. coli showed that this enzyme can catalyze the esterification of quinic acid with caffeoyl-CoA or p-coumaroyl-CoA to generate, respectively, chlorogenic acid (CGA) and p-coumaroyl quinate. Real time PCR experiments demonstrated an increase in the expression level of HQT in UV-C treated leaves, and established a correlation between the synthesis of phenolic acids and protection against damage due to abiotic stress. The HQT gene, together with a gene encoding hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase (HCT) previously isolated from globe artichoke, have been incorporated within the developing globe artichoke linkage maps.
Conclusion
A novel acyltransferase involved in the biosynthesis of CGA in globe artichoke has been isolated, characterized and mapped. This is a good basis for our effort to understand the genetic basis of phenylpropanoid (PP) biosynthesis in C. cardunculus.
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Rottenberg A, Zohary D: The wild ancestry of the cultivated artichoke. Genetic Resources and Crop Evolution. 1996, 43 (1): 53-58.
2. Lanteri S, Saba E, Cadinu M, Mallica G, Baghino L, Portis E: Amplified fragment length polymorphism for genetic diversity assessment in globe artichoke. Theor Appl Genet. 2004, 108 (8): 1534-1544.
3. Acquadro A, Portis E, Lee D, Donini P, Lanteri S: Development and characterization of microsatellite markers in Cynara cardunculus L. Genome. 2005, 48 (2): 217-225.
4. Martino V, Caffini N, Phillipson J, Lappa A, Tchernitchin A, Ferraro G, Debenedelli S, Schilcher H, Acevedo C: Identification and characterization of antimicrobial components in leaf extracts of globe artichoke (Cynara scolymus L.). Acta Horticulturae. 1999, 501: 111-114.
5. Zhu X, Zhang H, Lo R: Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem. 2004, 52 (24): 7272-7278.
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献