Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms

Author:

D’Hooghe Philippe,Escamez Sacha,Trouverie Jacques,Avice Jean-Christophe

Abstract

Abstract Background The decline in industrial emissions of sulphur (S) has led to a sulphate depletion in soil resulting in an alteration of crop performance. In oilseed rape, an S deficiency dramatically reduced the seed yield and/or quality. Paradoxically, little is known about the impact of sulphate limitation on oilseed rape leaf metabolism, despite it being a key determinant of growth. In order to identify the metabolic processes involved in the oilseed rape response to S restriction, an analysis of the young leaf proteome combined with a physiological study was carried out at the vegetative stage. Results S limitation does not significantly reduce the total shoot biomass but inhibits growth and photosynthesis of young leaves. This photosynthesis decline is not due to a decrease in chlorophyll content, which remains similar to Control. The increase in anthocyanins and H2O2 content in young leaves of S-limited plants suggests that S restriction leads to an oxidative stress. Proteomic analysis at 35 d of S limitation also revealed the induction of 12-oxophitodienoate reductase and ACC synthase, respectively involved in jasmonate and ethylene biosynthesis, two phytohormones that could be implicated in oxidative stress. Proteins involved in photosynthesis and carbon metabolism were also modulated by S restriction. In particular, the decrease in plastocyanin and ferredoxin–NADP reductase suggests that H2O2 accumulation is associated with perturbation of the photosynthetic electron transport chain. The accumulation of chloroplastic Cu-Zn SOD reinforces the idea that an oxidative stress probably occurs in the chloroplast. Proteomic results suggest that the maintenance of chlorophyll in S-limited conditions is related to an accumulation of Water Soluble Chlorophyll binding Proteins, involved in the protection of chlorophyll against ROS. The accumulation of the catalytic α–subunit of chloroplastic ATP synthase suggests that energy production is maintained. Conclusion S limitation leads to photosynthesis and carbon metabolism disturbances that could be responsible for the oxidative stress observed in the young leaves of oilseed rape. Despite this, induction of proteins involved in oxidative stress resistance and energy production shows that the leaf capacity to capture and use photosynthetic active radiations for ATP production remains efficient for as long as possible.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3