Synergism of sulfur availability and agronomic nitrogen use efficiency

Author:

Agyin‐Birikorang Sampson1ORCID,Boubakry Cissé2,Kadyampakeni Davie M.3,Adu‐Gyamfi Raphael4,Chambers Rachel A.1,Tindjina Ignatius5,Fuseni Abdul‐Rahman A.5

Affiliation:

1. USDA‐ARS Soil and Water Conservation Research Center Adams Oregon USA

2. International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) Bamako Mali

3. Department of Soil, Water, and Ecosystem Sciences University of Florida Lake Alfred Florida USA

4. Agronomy Department, Faculty of Agriculture University for Development Studies (UDS) Tamale Ghana

5. International Fertilizer Development Center (IFDC) Tamale Ghana

Abstract

AbstractNutrient management strategies that exploit nutrient elements’ synergistic interaction to enhance nitrogen use efficiency (NUE) are needed for economic and environmental reasons. A field study was carried out during the 2020–2022 growing seasons at six locations in three countries: two each in the United States, Ghana, and Mali using three sulfur (S) sources with different bioavailability levels (micronized elemental S, untreated elemental S, and ammonium sulfate); applied at five S application rates: site‐specific recommended S rate (SR), 25%, 50%, 75%, and 125% of SR; and a single nitrogen (N) application rate (site‐specific recommended N rate) to comprehensively investigate the influence of S availability on NUE. Specific objectives were to evaluate the impact of S availability on corn (Zea mays L.) yield, N uptake, and NUE. Regardless of the S source and experimental site, the aboveground S and N uptake were strongly and positively correlated (r > 0.88). Increases in apparent N recovery efficiency and agronomic NUE occurred with corresponding increases in S application rate, irrespective of the site and S source. The combined data showed that the agronomic efficiency of applied N fertilizer sources could be enhanced significantly by increasing S availability in soils. With the rising N fertilizer costs in recent times, N losses from the applied fertilizer are a drain on farmers’ income and of environmental concern. Thus, increasing NUE is a needed strategy to safeguard against excessive N application, increase farm profits, and minimize N losses to the environment that could disrupt the ecosystem function.

Publisher

Wiley

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3