Abstract
Abstract
Background
Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications, large scale production is required and optimal cryopreservation and culture conditions are essential to autologous and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term culture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological characteristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated.
Methods
Firstly, hUC-MSCs were isolated from human umbilical cord tissues and identified through morphology, surface markers and tri-lineage differentiation potential at passage 3, and then the biological characteristics and proteomic profiles were detected and compared after cryopreserving and long-term culturing at passage 4 and continuously cultured to passage 10 with detection occurring here as well. The proteomic profiles were tested by using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique and differential protein were confirmed by mass spectrometry.
Results
The results showed no significant differences in phenotypes including morphology, surface marker and tri-lineage differentiation potential but have obvious changes in translation level, which is involved in metabolism, cell cycle and other pathways.
Conclusion
This suggests that protein expression may be used as an indicator of hUC-MSCs security testing before applying in clinical settings, and it is also expected to provide the foundation or standardization guide of hUC-MSCs applications in regenerative medicine.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine
Reference55 articles.
1. Sierra Parraga JM, Rozenberg K, Eijken M, Leuvenink HG, Hunter J, Merino A, Moers C, Møller BK, Ploeg RJ, Baan CC, Jespersen B, Hoogduijn MJ. Effects of normothermic machine perfusion conditions on mesenchymal stromal cells. Front Immunol. 2019;10:765.
2. Fossett E, Khan WS. Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells Int. 2012;1:465259.
3. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–90.
4. Han YF, Tao R, Sun TJ, Chai JK, Xu G, Liu J. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology. 2013;65(5):819–27.
5. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, Samani FS, Torshizi Z, Nematollahi-Mahani SN. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. Vitro Cell Dev Biol Anim. 2012;48(2):75–83.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献