Molecular mechanisms of natural antifreeze phenomena and their application in cryopreservation

Author:

Shi Lingyu1,Zang Chuanbao2,Liu Zhicheng2,Zhao Gang1ORCID

Affiliation:

1. Department of Electronic Engineering and Information Sciences University of Science and Technology of China Hefei China

2. Yinfeng Cryomedicine Technology Co., Ltd. Jinan China

Abstract

AbstractCryopreservation presents a critical challenge due to cryo‐damage, such as crystallization and osmotic imbalances that compromise the integrity of biological tissues and cells. In contrast, various organisms in nature exhibit remarkable freezing tolerance, leveraging complex molecular mechanisms to survive extreme cold. This review explores the adaptive strategies of freeze‐tolerant species, including the regulation of specific genes, proteins, and metabolic pathways, to enhance survival in low‐temperature environments. We then discuss recent advancements in cryopreservation technologies that aim to mimic these natural phenomena to preserve cellular and tissue integrity. Special focus is given to the roles of glucose metabolism, microRNA expression, and cryoprotective protein modulation in improving cryopreservation outcomes. The insights gained from studying natural antifreeze mechanisms offer promising directions for advancing cryopreservation techniques, with potential applications in medical, agricultural, and conservation fields. Future research should aim to further elucidate these molecular mechanisms to develop more effective and reliable cryopreservation methods.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3