Affiliation:
1. Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
2. Department of Mechanical Engineering College of Design and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore
3. Institute for Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
4. NUS Tissue Engineering Program National University of Singapore Singapore 117510 Singapore
Abstract
AbstractCryopreservation strives to maximize the viability and biofunctionality of cells and tissues by cooling them to a subzero temperature to facilitate storage and delivery. This technology has enabled clinics and labs to preserve rare and crucial samples and is poised to become more important with rising interest in cell therapy. Here, the biological impact of cooling rates on different cellular components is first described, paying special emphasis on the differences between slow cooling and vitrification with a heat transfer perspective based on the Biot number. This is followed by an overview of various classes of chemical‐based cryoprotective agents including small molecules, antifreeze proteins, hydrogels, and cryoprotective nanomaterials. Most importantly, fundamental concepts of cryopreservation including Mazur's “two‐factor hypothesis” are revisited, gaps in them are highlighted, and experiments to validate reported claims to deepen mechanistic understanding of cryoprotection are proposed. A matric is also introduced to assess the suitability of biomaterials for use in cell therapy to support manufacturers in making strategic choices for storing clinical samples. It is believed that this review would inspire readers to scrutinize fundamental concepts in cryopreservation to facilitate the development of new cryoprotective materials and technologies to support the emerging cell manufacturing and therapy industry.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献