Effect of central PxxP motif in amphipathic alpha-helical peptides on antimicrobial activity and mode of action

Author:

Lee Hyunhee,Yang SungtaeORCID,Shin Sung-Heui

Abstract

AbstractAmphipathic α-helical peptides (AHPs) have shown potential as a therapeutic approach against multi-drug-resistant bacterial infections due to their broad-spectrum antimicrobial activity by disrupting bacterial membranes. However, their nonspecific interactions with membranes often result in cytotoxicity toward mammalian cells. Previous studies have shown that a PxxP motif near the middle of cathelicidin-derived antimicrobial peptides contributes to potent and selective antibacterial activity. In this study, we compared KL18 with KL-PxxP to examine the effects of the central PxxP motif in AHPs on their structure, antibiotic activity, and mode of action. In a membrane-mimetic environment, we observed that KL18 had a much higher helical content compared to KL-PxxP. In aqueous buffer, KL18 adopted a highly ordered α-helical conformation, while KL-PxxP exhibited a disordered conformation. We found that KL-PxxP exhibited 4–16 times higher antibacterial activity than KL18 and significantly reduced the hemolytic activity. These findings suggest that the dynamic conformational behaviors caused by the central PxxP motif conferred the antibacterial selectivity of AHPs. Additionally, KL-PxxP showed strong binding to anionic liposomes and weak binding to zwitterionic liposomes, explaining its selectivity for bacteria over mammalian cells. Despite having a low ability to dissipate the bacterial membrane potential, KL-PxxP translocated efficiently across lipid membranes. Therefore, we propose that the central PxxP motif in AHPs provides dynamic conformational behavior in aqueous and membrane-mimetic environments, enhances binding to anionic membranes, and facilitates translocation across lipid bilayers, resulting in improved antibacterial potency and selectivity. Understanding the unique structural characteristics and functional roles of the PxxP motif in the antimicrobial mechanism of action holds great potential for advancing the development of novel peptide antibiotics.

Funder

research funds from the Institute of Medical Science, Chosun University

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3