Error-related brain state analysis using electroencephalography in conjunction with functional near-infrared spectroscopy during a complex surgical motor task

Author:

Walia Pushpinder,Fu Yaoyu,Norfleet Jack,Schwaitzberg Steven D.,Intes Xavier,De Suvranu,Cavuoto Lora,Dutta Anirban

Abstract

AbstractError-based learning is one of the basic skill acquisition mechanisms that can be modeled as a perception–action system and investigated based on brain–behavior analysis during skill training. Here, the error-related chain of mental processes is postulated to depend on the skill level leading to a difference in the contextual switching of the brain states on error commission. Therefore, the objective of this paper was to compare error-related brain states, measured with multi-modal portable brain imaging, between experts and novices during the Fundamentals of Laparoscopic Surgery (FLS) “suturing and intracorporeal knot-tying” task (FLS complex task)—the most difficult among the five psychomotor FLS tasks. The multi-modal portable brain imaging combined functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for brain–behavior analysis in thirteen right-handed novice medical students and nine expert surgeons. The brain state changes were defined by quasi-stable EEG scalp topography (called microstates) changes using 32-channel EEG data acquired at 250 Hz. Six microstate prototypes were identified from the combined EEG data from experts and novices during the FLS complex task that explained 77.14% of the global variance. Analysis of variance (ANOVA) found that the proportion of the total time spent in different microstates during the 10-s error epoch was significantly affected by the skill level (p < 0.01), the microstate type (p < 0.01), and the interaction between the skill level and the microstate type (p < 0.01). Brain activation based on the slower oxyhemoglobin (HbO) changes corresponding to the EEG band power (1–40 Hz) changes were found using the regularized temporally embedded Canonical Correlation Analysis of the simultaneously acquired fNIRS–EEG signals. The HbO signal from the overlying the left inferior frontal gyrus—opercular part, left superior frontal gyrus—medial orbital, left postcentral gyrus, left superior temporal gyrus, right superior frontal gyrus—medial orbital cortical areas showed significant (p < 0.05) difference between experts and novices in the 10-s error epoch. We conclude that the difference in the error-related chain of mental processes was the activation of cognitive top-down attention-related brain areas, including left dorsolateral prefrontal/frontal eye field and left frontopolar brain regions, along with a ‘focusing’ effect of global suppression of hemodynamic activation in the experts, while the novices had a widespread stimulus(error)-driven hemodynamic activation without the ‘focusing’ effect.

Funder

Medical Technology Enterprise Consortium

U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC cooperative research agreement

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3