Seizure classification with selected frequency bands and EEG montages: a Natural Language Processing approach

Author:

Wang Ziwei,Mengoni PaoloORCID

Abstract

AbstractIndividualized treatment is crucial for epileptic patients with different types of seizures. The differences among patients impact the drug choice as well as the surgery procedure. With the advance in machine learning, automatic seizure detection can ease the manual time-consuming and labor-intensive procedure for diagnose seizure in the clinical setting. In this paper, we present an electroencephalography (EEG) frequency bands (sub-bands) and montages selection (sub-zones) method for classifier training that exploits Natural Language Processing from individual patients’ clinical report. The proposed approach is targeting for individualized treatment. We integrated the prior knowledge from patient’s reports into the classifier-building process, mimicking the authentic thinking process of experienced neurologist’s when diagnosing seizure using EEG. The keywords from clinical documents are mapped to the EEG data in terms of frequency bands and scalp EEG electrodes. The data of experiments are from the Temple University Hospital EEG seizure corpus, and the dataset is divided based on each group of patients with same seizure type and same recording electrode references. The classifier includes Random Forest, Support Vector Machine and Multi-Layer Perceptron. The classification performance indicates that competitive results can be achieve with a small portion of EEG the data. Using the sub-zones selection for Generalized Seizures (GNSZ) on all three electrodes, data are reduced by nearly 50% while the performance metrics remain at the same level with the whole frequency and zones. Moreover, when selecting by sub-zones and sub-bands together for GNSZ with Linked Ears reference, the data range reduced to 0.3% of whole range, and the performance deviates less than 3% from the results with whole range of data. Results show that using proposed approach may lead to more efficient implementations of the seizure classifier to be executed on power-efficient devices for long lasting real-time seizures detection.

Funder

Hong Kong Baptist University Department of Journalism

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3