Ictal-onset localization through effective connectivity analysis based on RNN-GC with intracranial EEG signals in patients with epilepsy

Author:

Wang Xiaojia,Liu Yanchao,Yang Chunfeng

Abstract

AbstractEpilepsy is one of the most common clinical diseases of the nervous system. The occurrence of epilepsy will bring many serious consequences, and some patients with epilepsy will develop drug-resistant epilepsy. Surgery is an effective means to treat this kind of patients, and lesion localization can provide a basis for surgery. The purpose of this study was to explore the functional types and connectivity evolution patterns of relevant regions of the brain during seizures. We used intracranial EEG signals from patients with epilepsy as the research object, and the method used was GRU-GC. The role of the corresponding area of each channel in the seizure process was determined by the introduction of group analysis. The importance of each area was analysed by introducing the betweenness centrality and PageRank centrality. The experimental results show that the classification method based on effective connectivity has high accuracy, and the role of the different regions of the brain could also change during the seizures. The relevant methods in this study have played an important role in preoperative assessment and revealing the functional evolution patterns of various relevant regions of the brain during seizures.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3