The size and composition of haplotype reference panels impact the accuracy of imputation from low-pass sequencing in cattle

Author:

Lloret-Villas AudaldORCID,Pausch Hubert,Leonard Alexander S.

Abstract

Abstract Background Low-pass sequencing followed by sequence variant genotype imputation is an alternative to the routine microarray-based genotyping in cattle. However, the impact of haplotype reference panels and their interplay with the coverage of low-pass whole-genome sequencing data have not been sufficiently explored in typical livestock settings where only a small number of reference samples is available. Methods Sequence variant genotyping accuracy was compared between two variant callers, GATK and DeepVariant, in 50 Brown Swiss cattle with sequencing coverages ranging from 4- to 63-fold. Haplotype reference panels of varying sizes and composition were built with DeepVariant based on 501 individuals from nine breeds. High-coverage sequence data for 24 Brown Swiss cattle were downsampled to between 0.01- and 4-fold to mimic low-pass sequencing. GLIMPSE was used to infer sequence variant genotypes from the low-pass sequencing data using different haplotype reference panels. The accuracy of the sequence variant genotypes that were inferred from low-pass sequencing data was compared with sequence variant genotypes called from high-coverage data. Results DeepVariant was used to establish bovine haplotype reference panels because it outperformed GATK in all evaluations. Within-breed haplotype reference panels were more accurate and efficient to impute sequence variant genotypes from low-pass sequencing than equally-sized multibreed haplotype reference panels for all target sample coverages and allele frequencies. F1 scores greater than 0.9, which indicate high harmonic means of recall and precision of called genotypes, were achieved with 0.25-fold sequencing coverage when large breed-specific haplotype reference panels (n = 150) were used. In absence of such large within-breed haplotype panels, variant genotyping accuracy from low-pass sequencing could be increased either by adding non-related samples to the haplotype reference panel or by increasing the coverage of the low-pass sequencing data. Sequence variant genotyping from low-pass sequencing was substantially less accurate when the reference panel lacked individuals from the target breed. Conclusions Variant genotyping is more accurate with DeepVariant than GATK. DeepVariant is therefore suitable to establish bovine haplotype reference panels. Medium-sized breed-specific haplotype reference panels and large multibreed haplotype reference panels enable accurate imputation of low-pass sequencing data in a typical cattle breed.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Horizon 2020 Framework Programme

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3