Tooth whitening with an experimental toothpaste containing hydroxyapatite nanoparticles

Author:

Shang Ren,Kaisarly Dalia,Kunzelmann Karl-Heinz

Abstract

Abstract Background The aim of this study was to evaluate the postbrushing tooth-whitening effect of toothpaste containing hydroxyapatite nanoparticles (nano-HAPs). The impact of the concentration on the whitening performance of nano-HAP toothpaste was also investigated. Methods Two concentrations of nano-HAP (10 wt% and 1 wt%) were incorporated in nonabrasive toothpastes. Forty bovine incisors were randomly assigned into four groups: 10 wt% nano-HAP, 1 wt% nano-HAP, toothpaste without nano-HAP as a negative control and water as a blank control. Each tooth was treated with the toothpaste three times and hydrodynamic shear force (HSF) once. The teeth surfaces were observed by SEM after each application. Tooth color (L*, a* and b* values) was measured by a spectrophotometer, and color changes (△E, △L, △a and △b values) were calculated. Two-way mixed ANOVA was performed to evaluate the influence of the concentration and repeated application on the tooth-whitening effect of nano-HAP. Results We found that nano-HAP-treated enamel exhibited higher L* values and lower a* and b* values than the control groups (P < 0.05). The 10 wt% nano-HAP group showed significantly higher △E values than the 1 wt% nano-HAP group (P < 0.05). After three applications, the △E mean value of the 10 wt% nano-HAP group was 4.47. The △E and △L values were slightly reduced after HSF (P < 0.05). For both nano-HAP groups, HAP single crystallites and agglomerates were identified, and their sizes grew with nano-HAP reapplication. Conclusions In conclusion, nano-HAP toothpaste has a satisfying postbrushing whitening effect and good resistance to mechanical forces. The whitening effect seemed to be concentration-dependent.

Funder

Universitätsklinik München

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3