Tooth Color and Reflectance as Related to Light Scattering and Enamel Hardness

Author:

ten Bosch J.J.1,Coops J.C.1

Affiliation:

1. Laboratory for Materia Technica, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

Abstract

Tooth color is determined by the paths of light inside the tooth and absorption along these paths. This paper tests the hypothesis that, since the paths are determined by scattering, a relation between color and scattering coefficients exists. One hundred and two extracted incisors were fixed in formalin, mounted in a standardized position in brass holders, and pumiced. A facet was prepared near the incisal edge on the labial plane to allow for Knoop hardness measurements with a 500-gram load. Light scattering by the enamel was measured in a 45°/0° geometry; light scattering by both enamel and dentin was measured in a 0°/0° geometry. The reflection spectrum of the tooth was measured from the labial plane with a spectroradiometer in a 45°/0° geometry, with standard illuminant A and standard illuminant D65. To include all volume-reflected light, we used entire-tooth illumination and small-area measurement. CIELAB color coordinates were calculated from the spectra. Neither spectra nor coordinates showed evidence of a contribution of fluorescence to tooth color. Averaged values and standard deviations for L*,a*,b* were 69.9 (4.1), 1.22 (1.4), and 17.9 (2.9), respectively. Both scattering coefficients averaged to 0.6 (0.4) mm-1; Knoop hardness number was, on average, 271 (39) kg/mm 2. L* correlated with a* (r = -0.51), with the enamel scattering coefficient (r = 0.60), and slightly with hardness (r = 0.17, p = 0.03). The colors of 28 teeth from which the enamel was removed correlated strongly with the colors of the complete tooth. This study quantitatively confirms that tooth color is determined mainly by dentin, with enamel playing only a minor role through scattering at wavelengths in the blue range.

Publisher

SAGE Publications

Subject

General Dentistry

Reference29 articles.

1. Optical Methods for the Detection and Quantification of Caries

2. Lesion Depth and Microhardness Indentations on Artificial White Spot Lesions

3. Billmeyer FW, Saltzman M. (1981). Principles of color technology. 2nd ed. New York: Wiley & Sons, p. 63.

Cited by 237 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3