Author:
Park Eun Young,Jeong Sungmoon,Kang Sohee,Cho Jungrae,Cho Ju-Yeon,Kim Eun-Kyong
Abstract
Abstract
Background
Owing to the remarkable advancements of artificial intelligence (AI) applications, AI-based detection of dental caries is continuously improving. We evaluated the efficacy of the detection of dental caries with quantitative light-induced fluorescence (QLF) images using a convolutional neural network (CNN) model.
Methods
Overall, 2814 QLF intraoral images were obtained from 606 participants at a dental clinic using Qraypen C® (QC, AIOBIO, Seoul, Republic of Korea) from October 2020 to October 2022. These images included all the types of permanent teeth of which surfaces were smooth or occlusal. Dataset were randomly assigned to the training (56.0%), validation (14.0%), and test (30.0%) subsets of the dataset for caries classification. Moreover, masked images for teeth area were manually prepared to evaluate the segmentation efficacy. To compare diagnostic performance for caries classification according to the types of teeth, the dataset was further classified into the premolar (1,143 images) and molar (1,441 images) groups. As the CNN model, Xception was applied.
Results
Using the original QLF images, the performance of the classification algorithm was relatively good showing 83.2% of accuracy, 85.6% of precision, and 86.9% of sensitivity. After applying the segmentation process for the tooth area, all the performance indics including 85.6% of accuracy, 88.9% of precision, and 86.9% of sensitivity were improved. However, the performance indices of each type of teeth (both premolar and molar) were similar to those for all teeth.
Conclusion
The application of AI to QLF images for caries classification demonstrated a good performance regardless of teeth type among posterior teeth. Additionally, tooth area segmentation through background elimination from QLF images exhibited a better performance.
Funder
Yeungnam University Research Grant
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51–9.
2. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral Diseases and risks to oral health. Bull World Health Organ. 2005;83(9):661–9.
3. Gil-Montoya JA, de Mello AL, Barrios R, Gonzalez-Moles MA, Bravo M. Oral health in the elderly patient and its impact on general well-being: a nonsystematic review. Clin Interv Aging. 2015;10:461–7.
4. Yılmaz H, Keles S. Recent methods for diagnosis of dental caries in dentistry. Meandros Med Dent J. 2018;19:1–8.
5. Aljehani A, Yang L, Shi XQ. In vitro quantification of smooth surface caries with DIAGNOdent and the DIAGNOdent pen. Acta Odontol Scand. 2007;65(1):60–3.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献