Author:
Cao Mingchen,Li Lei,Xu Long,Fang Mengxiang,Xing Xiaomin,Zhou Changkai,Ren Wei,Wang Longyuan,Jing Fanbo
Abstract
Abstract
Background
The recurrent aphthous stomatitis (RAS) frequently affects patient quality of life as a result of long lasting and recurrent episodes of burning pain. However, there were temporarily few available effective medical therapies currently. Drug target identification was the first step in drug discovery, was usually finding the best interaction mode between the potential target candidates and probe small molecules. Therefore, elucidating the molecular mechanism of RAS pathogenesis and exploring the potential molecular targets of medical therapies for RAS was of vital importance.
Methods
Bioinformatics data mining techniques were applied to explore potential novel targets, weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression module of the gene chip data from GSE37265, and the hub genes were identified by the Molecular Complex Detection (MCODE) plugin.
Results
A total of 16 co-expression modules were identified, and 30 hub genes in the turquoise module were identified. In addition, functional analysis of Hub genes in modules of interest was performed, which indicated that such hub genes were mainly involved in pathways related to immune response, virus infection, epithelial cell, signal transduction. Two clusters (highly interconnected regions) were determined in the network, with score = 17.647 and 10, respectively, cluster 1 and cluster 2 are linked by STAT1 and ICAM1, it is speculated that STAT1 may be a primary gene of RAS. Finally, genistein, daidzein, kaempferol, resveratrol, rosmarinic acid, triptolide, quercetin and (-)-epigallocatechin-3-gallate were selected from the TCMSP database, and both of them is the STAT-1 inhibitor. The results of reverse molecular docking suggest that in addition to triptolide, (-)-Epigallocatechin-3-gallate and resveratrol, the other 5 compounds (flavonoids) with similar structures may bind to the same position of STAT1 protein with different docking score.
Conclusions
Our study identified STAT1 as the potential biomarkers that might contribute to the diagnosis and potential therapeutic target of RAS, and we can also screen RAS therapeutic drugs from STAT-1 inhibitors.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Saikaly SK, Saikaly TS, Saikaly LE. Recurrent aphthous ulceration: a review of potential causes and novel treatments. J Dermatol Treat. 2018;29(6):542–52.
2. Edgar NR, Saleh D, Miller RA. Recurrent aphthous stomatitis: a review. J Clin Aesthet Dermatol. 2017;10(3):26.
3. Ślebioda Z, Szponar E, Kowalska A. Etiopathogenesis of recurrent aphthous stomatitis and the role of immunologic aspects: literature review. Arch Immunol Ther Exp. 2014;62(3):205–15.
4. Ślebioda Z, Szponar E, Kowalska A. Recurrent aphthous stomatitis: genetic aspects of etiology. Adv Dermat Allergol/Postȩpy Dermatologii I Alergologii. 2013;30(2):96.
5. Tarakji B, Gazal G, Al-Maweri SA, Azzeghaiby SN, Alaizari N. Guideline for the diagnosis and treatment of recurrent aphthous stomatitis for dental practitioners. J Int Oral Health: JIOH. 2015;7(5):74.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献