Sonic irrigant activation for root canal disinfection: power modes matter!

Author:

Eggmann Florin,Vokac Yvonne,Eick Sigrun,Neuhaus Klaus W.

Abstract

Abstract Background Sonic irrigant activation has gained widespread popularity among general dentists and endodontists alike in recent years. This in vitro study aimed to evaluate the impact of three power modes of a sonic activation device (EDDY) on its antimicrobial effectiveness in infected root canals. Methods The root canals of straight, human roots (n = 120) were prepared to size 40/.06. In a short-term infection experiment, the root canals were inoculated with different microbial species for three days. The following irrigation protocols, using 4 ml of normal saline as irrigant, were performed: negative control, manual rinsing, sonic irrigant activation at power modes “low”, “medium” and “high”. In a second, long-term experiment, testing the same irrigation protocols, inoculation lasted 21 days and sodium hypochlorite was used as irrigant. Sequential infection control samples were assessed using culture assays. The statistical analysis included one-way analysis of variance of log10-scaled counts of colony-forming units (CFU) with post-hoc comparisons using Bonferroni corrections and Chi2 tests (α = 0.05). Results In the short-term experiment, the sonic irrigation protocols decreased the number of CFUs by 1.88 log10 units compared with the negative control (p < 0.001). The power modes “medium” and “high” achieved the most effective reduction of the microbial load. In the long-term experiment, microbial regrowth occurred after 7 days unless the device was used at its highest power setting. Conclusions The power modes of the sonic irrigation device have a significant impact on the effectiveness for endodontic disinfection. The sonic irrigation device should always be used at the highest power setting in order to maximize its antimicrobial effectiveness.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3