Determination of a Representative and 3D-Printable Root Canal Geometry for Endodontic Investigations and Pre-Clinical Endodontic Training—An Ex Vivo Study

Author:

Kucher Michael1ORCID,Dannemann Martin2ORCID,Modler Niels3,Böhm Robert1ORCID,Hannig Christian4ORCID,Kühne Marie-Theres4

Affiliation:

1. Faculty of Engineering, Leipzig University of Applied Sciences, 04277 Leipzig, Germany

2. Faculty of Automotive Engineering, Institute of Energy and Transport Engineering, Westsächsische Hochschule Zwickau, 08056 Zwickau, Germany

3. Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany

4. Clinic of Operative and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany

Abstract

Models of artificial root canals are used in several fields of endodontic investigations and pre-clinical endodontic training. They allow the physical testing of dental treatments, the operating of instruments used and the interaction between these instruments and the tissues. Currently, a large number of different artificial root canal models exist whose geometry is created either on the basis of selected natural root canal systems or to represent individual geometrical properties. Currently, only a few geometric properties such as the root canal curvature or the endodontic working width are taken into consideration when generating these models. To improve the representational capability of the artificial root canal models, the aim of the current study is therefore to generate an artificial root canal based on the statistical evaluation of selected natural root canals. Here, the approach introduced by Kucher for determining the geometry of a root canal model is used, which is based on the measurement and statistical evaluation of the root canal center line’s curvatures and their cross-sectional dimensions. Using the example of unbranched distal root canals of mandibular molars (n = 29), an artificial root canal model representing the mean length, curvature, torsion and cross-sectional dimensions of these teeth could be derived.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

General Dentistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3