Abstract
Abstract
Background
Short-term sintering may offer advantages including saving time and energy but there is limited evidence on the effect that altering sintering time has on the accuracy of monolithic zirconia crowns. The purpose of this in vitro study was to investigate the effect of shortened sintering time on the marginal and internal fit of 3Y-TZP and 4Y-TZP monolithic crowns.
Methods
Sixty monolithic zirconia crowns were fabricated for the maxillary first molar tooth on the prefabricated implant abutment. Groups were created according to the material composition: 3Y-TZP Generation 1, 3Y-TZP Generation 2 and 4Y-TZP. Two different sintering protocols were performed: same final sintering temperature (1500 °C) and various rates of heating (10 °C/min and 40 °C/min), cooling down speed (− 10 °C/min and − 40 °C/min), holding time (45 and 120 minutes), and total sintering time (approximately 2 and 7 hours, respectively). The marginal and internal fit of the crowns were determined using the silicone replica technique. Comparisons between groups were analyzed using two-way ANOVA. Pairwise multiple comparisons were performed using t-test (p < 0.05).
Results
The mean marginal gap values of 4Y-TZP zirconia revealed statistically significant increase for the short-term sintering protocol (p < 0.0001), while no difference was observed between the sintering protocols for the mean marginal gap values of 3Y-TZP groups. Although all groups showed clinically acceptable gap values, altering the sintering time had an effect on marginal fit of the crowns manufactured from 4Y-TZP zirconia.
Conclusions
Shortening the sintering time may lead to differences within clinically acceptable limits. The manufacturer’s recommendations according to material composition should be implemented with care.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献