PREDICTION OF HARDNESS, FLEXURAL STRENGTH, AND FRACTURE TOUGHNESS OF ZRO2 BASED CERAMICS USING ENSEMBLE LEARNING ALGORITHMS

Author:

Kulyk VolodymyrORCID,Izonin IvanORCID,Vavrukh ValentynaORCID,Tkachenko Roman,Duriagina ZoiaORCID,Vasyliv BogdanORCID,Kováčová MonikaORCID

Abstract

Flexural strength, hardness, and fracture toughness are the basic mechanical properties of ceramic materials. Manufacturers widely use this set of properties to ensure the durability of ceramic products. However, many factors, such as chemical and phase compositions, sintering temperature, average grain size, density, and others, affect these properties, making it challenging to estimate corresponding reliability parameters correctly. Experimental examination of the impact of these factors on the mechanical properties of ceramics is a rather time-consuming and resource-consuming procedure. This work aims to predict the mechanical properties of zirconia ceramics using machine learning tools. The authors have created an experimental database for predicting the hardness, flexural strength, and fracture toughness of ZrO2-based ceramics based on chemical composition, phase composition, microstructural features, and sintering temperature on the mechanical properties of zirconia ceramics. The authors compare compared the effectiveness of using different machine learning algorithms and have found a high accuracy of the predicted values of each of the three mechanical properties using boosting ensemble methods. Also they  developed a stacked ensemble of machine learning methods to improve the accuracy of determining the hardness property prediction task. We obtained the increase in accuracy of more than 10% (R2) using our approach.

Publisher

SciCell

Subject

Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3