Testing encoding specificity and the diagnostic feature-detection theory of eyewitness identification, with implications for showups, lineups, and partially disguised perpetrators

Author:

Carlson Curt A.ORCID,Hemby Jacob A.,Wooten Alex R.,Jones Alyssa R.,Lockamyeir Robert F.,Carlson Maria A.,Dias Jennifer L.,Whittington Jane E.

Abstract

AbstractThe diagnostic feature-detection theory (DFT) of eyewitness identification is based on facial information that is diagnostic versus non-diagnostic of suspect guilt. It primarily has been tested by discounting non-diagnostic information at retrieval, typically by surrounding a single suspect showup with good fillers to create a lineup. We tested additional DFT predictions by manipulating the presence of facial information (i.e., the exterior region of the face) at both encoding and retrieval with a large between-subjects factorial design (N = 19,414). In support of DFT and in replication of the literature, lineups yielded higher discriminability than showups. In support of encoding specificity, conditions that matched information between encoding and retrieval were generally superior to mismatch conditions. More importantly, we supported several DFT and encoding specificity predictions not previously tested, including that (a) adding non-diagnostic information will reduce discriminability for showups more so than lineups, and (b) removing diagnostic information will lower discriminability for both showups and lineups. These results have implications for police deciding whether to conduct a showup or a lineup, and when dealing with partially disguised perpetrators (e.g., wearing a hoodie).

Funder

National Institute of Justice

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Experimental and Cognitive Psychology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3