Author:
Vestby Lene K,Møretrø Trond,Langsrud Solveig,Heir Even,Nesse Live L
Abstract
Abstract
Background
Feed contaminated with Salmonella spp. constitutes a risk of Salmonella infections in animals, and subsequently in the consumers of animal products. Salmonella are occasionally isolated from the feed factory environment and some clones of Salmonella persist in the factory environment for several years. One hypothesis is that biofilm formation facilitates persistence by protecting bacteria against environmental stress, e.g. disinfection. The aim of this study was to investigate the biofilm forming potential of Salmonella strains from feed- and fishmeal factories. The study included 111 Salmonella strains isolated from Norwegian feed and fish meal factories in the period 1991–2006 of serovar Agona, serovar Montevideo, serovar Senftenberg and serovar Typhimurium.
Results
Significant differences were found between serovars regarding the abilities to form biofilm on polystyrene (microtiter plate assay) and in the air-liquid interface of nutrient broth (pellicle assay). Strains of serovar Agona and serovar Montevideo were good biofilm producers. In Norwegian factories, clones of these serovars have been observed to persist for several years. Most serovar Senftenberg clones appear to persist for a shorter period, and strains of this serovar were medium biofilm producers in our test systems. Strains of the serovar Typhimurium were relatively poor biofilm producers. Salmonella ser. Typhimurium clones have not been observed to persist even though this serovar is resident in Norwegian wild life. When classifying strains according to persistence or presumed non-persistence, persistent strains produced more biofilm than presumed non-persisting strains.
Conclusion
The results indicate a correlation between persistence and biofilm formation which suggests that biofilm forming ability may be an important factor for persistence of Salmonella in the factory environment.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference28 articles.
1. Anon: Scientific Opinion of the Panel on Biological Hazards on a request from the Health and Consumer Protection, Directory General, European Commission on Microbiological Risk Assessment in feedingstuffs for foodproducing animals. EFSA J. 2008, 720: 1-84.
2. Davies RH, Wray C: Distribution of Salmonella contamination in ten animal feedmills. Vet Microbiol. 1997, 57: 159-169. 10.1016/S0378-1135(97)00114-4.
3. Lunestad BT, Nesse L, Lassen J, Svihus B, Nesbakken T, Fossum K, et al: Salmonella in fish feed; occurrence and implications for fish and human health in Norway. Aquaculture. 2007, 265: 1-8. 10.1016/j.aquaculture.2007.02.011.
4. Shirota K, Katoh H, Murase T, Ito T, Otsuki K: Monitoring of layer feed and eggs for Salmonella in eastern Japan between 1993 and 1998. J Food Prot. 2001, 64: 734-737.
5. Veldman A, Vahl HA, Borggreve GJ, Fuller DC: A survey of the incidence of Salmonella species and Enterobacteriaceae in poultry feeds and feed components. Vet Rec. 1995, 136: 169-172.
Cited by
202 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献